
Building an Arduino controlled Red-Green-Blue-

(RGB)-LED-Lamp

Target audience: Students, 10-14yo

Time planning: 3-4 hours

Introduction

In this workshop, we are going to build an RGB Lamp providing 3 bright light cones in red,

green and blue (or other colors) which turn on and off in a row. The speed of the light show

can be manually controlled by a turning knob which connects to a potentiometer (adjustable

resistor). At low speed, the light cones visibly light up one after the other; at maximum speed

they appear to shine at the same time, which generates some interesting color mixing: When

you put your hands between the lamp and a white wall, new colors and colorful shadows

appear!

1. Part list

1 WeMos or similar Arduino-like
controller. A WeMos is a very inexpensive
microcontroller, which can be programed as
easily as an Arduino. This WeMos will control
the LEDs according to the uploaded ‘sketch’
(a term for program coined in the Arduino
community).

3 high-power LEDs (one of each color red,
green and blue). ‘LED’ stands for Light
Emitting Diode and generates light of certain
color. A diode is a one-way-street for
electrical current. When you turn around the
diode, the current is blocked.

3 lenses fitting the LEDs. The lenses we
use concentrate the light provided by each
LED. They are simply attached to the LED.

3.3Ω, 4.7Ω and 5.6Ω resistors (0.5W).
Resistors limit the current in an electrical
circuit. Here we need them for protecting the
LEDs. Each LED-color needs a different
resistor. A resistor has a set of colored rings
on it which denote its electrical resistance;
the larger its resistance, the more it limits the
current

1×ULN2003. This integrated circuit (IC) is a
‘driver’ for the LEDs: The WeMos does not
provide enough current for the power-hungry
LEDs, so we need an amplifier, which is
controlled by a small current and provides a
large current. That’s what the ULN2003 does.

1×Potentiometer (some people call it ‘rotary
angle sensor’ these days). A potentiometer
is an adjustable resistor, with the resistance
depending on the angle of rotation. It’s widely
used as a volume control in radios.

1×Large breadboard (170 points). This
breadboard carries the WeMos and the
ULN2003

1×small breadboard (55 points). This
breadboard carries the resistors for the LED

Breadboard jumpers, double male (6
green, 1 black, 1 red). ‘Double male’ means
they can be plugged into the board which
each side.

Some insulated wire for connecting the
LEDs (red and black, 50cm each, no
braided wire!)

USB A to USB B connector for
programming and powering the WeMos

2. Colors

Light is an electromagnetic wave, which moves through space at a speed of about c=300,000

kilometers per second, which is a little more than 1,000,000,000 km/hour. Like every other

wave (sound, water, …), it oscillates while it propagates, creating crests and troughs, see

Figure 1. The distance between two successive crests is called the wavelength . Light

oscillates very quickly, at a frequency of about f=600,000,000,000,000 times per second

(600 THz) for green light, which results in a wavelength of  = c/f = 500nm.

Figure 1: A wave of a given wavelength

There is a wide range of electromagnetic waves, which differ only be their wavelengths.

Figure 2. shows the most important ones, ranging from radio waves with a wavelength of

meters, over microwaves, light, X-rays and Gamma rays, which are emitted in radioactive

processes. The ‘visible spectrum’, which contains all colors we see, is only a tiny part of the

existing electromagnetic spectrum. Its wavelengths range from 700nm (red) to 400nm (violet),

with all rainbow colors in between.

Figure 2: Electromagnetic spectrum

Our eyes have 3 types of receptor, for red, green and blue. All other colors are mixing

products in the eye. For example, yellow light does not have a special receptor in the human

eye. But, its wavelength is between red and green and excites the red and the green

receptors about the same as equal amounts of red and green do, see Figure 2. It also means

that you can create yellow light by mixing red and green light! The human eye cannot see any

difference between “true” yellow light and a suitable combination of red and green (or other

colored) light.

There are some colors which are not present in the spectrum in Figure 2, because they do not

have their own unique wavelength. They can only be created from mixing colors. Those are,

for example, magenta, which is similar to pink (a mixture of red and blue), white (a mixture of

red, blue and green), and so on. Black, on the other hand, is just the absence of light.

Figure 3 shows the color mixing of red, green and blue. Because our eyes have red, green

and blue receptors, a computer screen or smartphone display also use red, green and blue

light to create almost every possible color. You can see their individual color pixels when you

look very closely.

Figure 3: Color mixing of red, green and blue

3. Electronics Basics

Voltage and Current

It is useful to compare an electrical circuit to something we have a better understanding of,

like a water pipe system, see Figure 4. A battery or solar cell is like a water pump; they

generate a pressure, which corresponds to the voltage. When you connect a pipe with one

end to a water reservoir and with the other to a water pump, the pump generates pressure

(voltage) and water (electrical) current. The higher the pump pressure (voltage), the larger the

resulting water flow (current). You can limit the water flow (current) by putting something in its

way (a ball of hair in a clogged up shower drain) or make the tube thinner. Such a restriction

corresponds to an electrical resistor.

Figure 4: Another way to memorize the relation between voltage (VOLT), current (AMP) and resistance
(OHM).

Protecting LEDs

LEDs get destroyed when the current becomes too high. When we operate them with a given

voltage, each LED needs their individual resistor to limit their current. Red LEDs need the

least voltage and therefore the largest protective resistor. Resistors usually have colored rings

which denote their value. Here is the encryption key:

Figure 5: Resistor code table

When we connect the LEDs to the driver ULN2003, we need to take into account the driver’s

inner resistor, which is like resistor already present in the IC. This means, that we need, in

fact, smaller resistors than anticipated, which are best determined experimentally.

Here are the values we found:

LED Resistor Color ring code

Red 5.6 ohms green-blue- gold -gold

Green 3.3 ohms orange-orange- gold – gold

Blue 4.7 ohms yellow-violet- gold –gold

Depending on the LEDs we use, those values might differ. But don’t worry; it’s safe to operate

your high-power-LEDs with the values given.

4. The controller (WeMos)

This project uses a WeMos to control 3 high-power LEDs, but a NodeMCU, an ESP8266 or

similar will do as well. To keep the confusion at a reasonable level, we describe everything in

terms of the WeMos. When using a different platform, the program environment needs to be

adapted accordingly.

The WeMos is powered and programmed through a USB connection to a computer. Once it is

programmed, it can be powered by phone charger.

The WeMos (Figure 6) is an Arduino based platform which can be directly programmed using

a desktop or laptop and which can perform a large variety of tasks. Today, there are many

variations of the Arduino platform coming in all sizes and peripheries. In our project, we

choose the WeMos, which is a tiny, cheap and very powerful platform. There are many free

Arduino tutorials available on the internet, which are perfect for any stage of advancement. In

this tutorial, we therefore limit ourselves to those things necessary for building our WeMos

controlled RGB-Lamp.

Figure 6: A WeMos.

The metallic box is a shield for electromagnetic waves and contains the microcontroller and

the WLAN transceiver, which allows the WeMos to wirelessly communicate. In the WeMos

Lite, this shield is missing, which does not seem to pose a problem though. The curly printed

wire outside this box on the left is its antenna. The WeMos is powered through the USB-

connector on the bottom, which runs on 5 volts. Since the WeMos can only take 3.3 volts,

there are additional components on the bottom of the board which provide this voltage.

5. Periphery

Figure 7 below shows the wiring of the WeMos to the periphery electronics.

Figure 7: Wiring diagram of our RGB lamp

The WeMos switches its outputs D1, D2 and D3 on and off in a row. Those signals are fed to

the driver IC ULN2003, where they are amplified. The ULN2003 powers the red, green and

blue LEDs via protective resistors, without which the LEDs would burn up. The current circuit

must be closed, so the ground (negative terminal) goes to the ULN2003, and the 5V positive

terminal goes to each LED.

The potentiometer is connected to the 3,3V (!) positive terminal and ground. Its center

terminal then provides a voltage of 0…3,3V, depending on the angular position of the turning

knob. This voltage is fed to the analog input A0 of the WeMos and determines the speed at

which the LEDs blink.

6. Quick start guide for the WeMos

For programming and controlling the WeMos, we use the Arduino IDE (Integrated

development environment), which can be downloaded from

https://www.arduino.cc/en/Main/Software .

1. Open the Arduino IDE, go to “Files” and click on “Preferences”.

Figure 8: Adding the IDE for WeMos

Copy the following line into the “Additional Boards Manager URLs” text box:

https://www.arduino.cc/en/Main/Software

https://github.com/esp8266/Arduino/releases/download/2.4.0-

rc2/package_esp8266com_index.json

and press OK to close the Preferences tab.

2. Select “Tools” and “Board”, and click on “Boards Manager…” in the pop-up menu.

Navigate to “esp8266 by ESP8266 Community” and click into the field. This will install the

programming environment we need, for the WeMos we use, or other boards included in this

package as shown.

Figure 9: Installing the right package

Finally, click again in ToolsBoard and select the appropriate WeMos (D1 R2 & mini, Lite, or

whatever you use) from the list:

Figure 10: Selecting the WeMos from the drop-down menu

Now our WeMos is ready to be programmed.

7. The sketch (program code)

Figure 11: Sketch for our RGB lamp

This is the sketch that controls the 3 LEDs. It is included with this workshop and will also be

downloadable at http://phablabs.eu. It consists of 2 parts: the setup and an endless loop. In

the setup function void setup(){…} the WeMos terminals D1, D2 and D3 are defined as

outputs for the 3 LEDs and the terminal A0 is defined as input for the potentiometer. Further

down, the function void loop() {…} switches off one LED and lights up the next, then waits for t

milliseconds and moves on the next LED. The delay time t corresponds to the voltage at

terminal A0, which is determined by the position of the potentiometer. There are many

excellent basic and advanced tutorials on the web which explain everything in more detail.

Figure 12: Connecting the WeMos to a vacant computer USB slot

Connect the WeMos to a free USB-port of your computer (Figure 12) and find out the name of

this port, using the Device Manager (German: Geräte-ManagerAnschlüsse (COM/LPT)). In

the IDE, select the port with ToolsPort. Make sure the right type of WeMos is selected

(ToolsBoard …). Compile and upload the file using the button displaying an arrow pointing

right. If everything goes well, the IDE should look like this after the upload:

Figure 13: Compiling and uploading to the WeMos

8. Building the electronics

The large breadboard for WeMos and ULN2003

Figure 14: Large breadboards for carrying WeMos and driver IC ULN2003

We will build the circuit on a breadboard. Breadboards come in different sizes and have one

more common rail. The large breadboards we use (Figure 14) have a total of 17×10=170

points. Each 10-point-column consists of 2 segments with 5 mutually connected points each.

The high-power LEDs we use can handle about 100mA without cooling. With appropriate

cooling, which is not part of this workshop, they can support more current. The WeMos

module cannot provide such large currents; its output terminals are limited to about 12mA.

This is why we need a driver, which is basically an amplifier for the low-power outputs of the

WeMos. Here, we use the universal driver IC ULN2003, which costs only a few cents and has

7 individual drivers. It also has 16 pins. There is a notch on one of the short edges. When this

notch is on the left as in Figure 15, the lower row is defined as pins 1…8, the upper row

16…9. As seen from the diagram, the pin numbers are counted counterclockwise.

Figure 15: The driver IC “ULN2003”

When the notch is on the left, the 7 inputs (1B…7B) are on the bottom, the outputs (1C…7C)

on the top. On the right are 2 additional terminals; we only need “E”, which is connected to

ground.

Assembling the electronics

First we solder about 12cm (4”) long insulated wires to the terminals. Again, use black wires

for the negative and red or white wires for the positive LED terminal (Figure 16).

Figure 16: The three LEDs with their wires attached

Then we prepare the potentiometer. The braided wire connector that comes with the

potentiometer is too soft for the breadboard, so we don’t use it. Instead, we take 10cm long

solid wires (0.5…0.6mm diameter) and solder them to the potentiometer terminals as

described in Figure 17.

Figure 17: Connecting the potentiometer: Black goes to GND (ground), red to VCC (positive voltage) and
green to SIG (signal). NC (not connected) will not be connected.

Now it’s time to mount everything on those breadboards. Figure 18 shows the first four steps.

Always remember, 5 points in a row are connected, as marked by a cyan line in (a). Insert

the ULN2003 across the bridge as shown. Make sure the U-shaped notch (marked here by a

yellow ellipse) points towards the breadboard center. Then insert the WeMos controller

symmetrically across the bridge, so that its USB port points outwards and its rightmost pins

are inside the breadboard’s rightmost points. (c) Connect the WeMos ground (labelled “G” or

“GND”) to the ULN2003 ground. (d) Connect the potentiometer terminals as shown: black to

ground, red to 3.3 volts and green to the WeMos analogue input A0.

Figure 18: Steps 1-4 (see text for details)

Now, connect WeMos outputs D1,D2,D3 with inputs 5,6,7 of the ULN2003 as shown in Figure

19(a). Then we take the small breadboard. Like for the large breadboard, 5 points in each row

are mutually connected. Insert the 3 different resistors as shown. The uppermost (green-blue-

gold-gold) is for the red LED, the one in the middle (orange-orange-gold-gold) for the green

and the one at the bottom (yellow-violet-gold-gold) for the blue one. Connect the red, green

and blue LEDs as shown in (c) and (d).

Figure 19: Steps 5-8 (see text for details)

Connect the LED-board to the main board as shown in Figure 20(a,b,c). Before you proceed

to (d), compare you complete setup up with Figure 7 to make sure all components are the

right way around and everything is connect correctly. Then connect your WeMos to one of

your computer’s USB sockets (d).

Figure 20: Steps 9-12 (see text for details)

9. Checking the lamp

Connect the lamp to a USB socket. The 3 LEDs should light up. If they don’t, immediately

disconnect the lamp from the USB socket and search for the error. When you turn the

potentiometer the speed at which the LEDs blink should change.

10. Building the box

Now it’s time to build a box around it. A laser cutter cuts out the parts from a sheet of wood

according to the program files provided to you. You can easily push out the single element.

We use wood glue on same parts as indicated. The first steps are shown in Figure 21 and

Figure 22.

Figure 21: (a) Bottom plate, (b-d) Mounting the LED-plate

Figure 22: (a,b) Gluing the LED-wall, (c,d): Assembling the remaining parts (without lid yet!)

Now that the box is finished, we insert the electronics. Figure 23 shows the steps. The large

breadboard has a sticky bottom, just remove the protective foil (Figure 23a). Place the board

into the box (b), make sure the WeMos USB-port aligns with the box opening and press

down until it sticks to the ground. Insert the potentiometer (c) and plug its turning knob to its

axis (d).

Figure 23: (a) The large board has a stick bottom surface so it can be (b) glued to the bottom of the box, so
that the USB port is accessible through the opening (check from the outside first!). Insert the
potentiometer (c) and add that funny little knob from the outside (d)

Now we install the LED and the lenses. Assemble the 3 lens kits as shown in Figure 24(a-c).

In order to keep those lenses safely attached to the LEDs, we prepare an auxiliary plate; see

Figure 24(d). Glue those corner pieces to the auxiliary plate as shown.

Figure 24(a-c): How to assemble those 3 lens kits. (d) Auxiliary plate for keeping lenses in place.

Insert the nuts in each corner hole (Figure 25a,b). Then put the boards with the screws on top

of the LEDs (Figure 25c,d), and carefully insert the screws (Figure 26a). Turn those screws

not too tight, just enough to keep everything in place (Figure 26b).

Glue 4 more corner pieces to the cover lid (Figure 26c), and then, as soon as the glue is dry,

carefully (!) close the box with the lid (Figure 26d). Done! 

Figure 25: Preparing the auxiliary board

Figure 26: Attaching the auxiliary board and making the lid cover

11. Operation of the lamp

Reconnect the lamp to the power supply. Is everything still working? If not, unplug

immediately and search for the fault.

With the potentiometer you can select the speed of the light change. Point the lamp towards

a white wall and look what the shadows look like when you put your fingers in between.

Where do those extra colors come from? If you don’t remember, look in Chapter 2 (Colors).

Figure 27: Finished device (without lid cover)

Figure 28: Colors and shadows on the wall

What have we learned?

In this workshop, we have learned how to build an inexpensive RGB-lamp with the

microcontroller WeMos. We learned how to program such a device with freeware software

available on the internet, and how to build the peripheral electronics to safely operate high-

power-LEDs. We also got acquainted with making our own tailored wooden box around the

device using laser-cutting.

Concluding thoughts

Arduino-based systems are an inexpensive and easy way to solve all kinds of problems, that

only a couple of years ago required extensive expert knowledge. Today, there is a huge

Arduino community around the world who works on all kinds of open-source-projects and who

are more than happy to share their knowledge and experience. You can use the introduction

from this workshop to come up with and solve your own tasks,

PHABLABS 4.0 is a European project where two major trends are combined into one

powerful and ambitious innovation pathway for digitization of European industry:

On the one hand the growing awareness of photonics as an important innovation driver and

a key enabling technology towards a better society, and on the other hand the exploding

network of vibrant Fab Labs where next-generation practical skills-based learning using

KETs is core but where photonics is currently lacking.

www.PHABLABS.eu

This workshop was set up by the JOANNEUM RESEARCH in close collaboration with

FAB|Lab Graz. For questions and comments, please email Frank Reil at

frank.reil@joanneum.at or Lukas Kreilinger at lukas.kreilinger@tugraz.at.

http://www.phablabs.eu/
mailto:frank.reil@joanneum.at
mailto:matthias.friessnig@tugraz.at

