
1

PHOTONICS WORKSHOP
REMOTE SENSOR WITH SMARTPHONE READOUT

2

DISCLAIMER:

By using this information you agree to be legally bound by these terms, which shall take effect
immediately on your first use of the information.

PHABLABS 4.0 consortium and its member organizations give no warranty that the provided in-
formation is accurate, up-to-date or complete. You are responsible for independently verifying the
information. VUB cannot be held liable for any loss or damage that may arise directly or indirectly
from the use of or reliance on the information and/or products provided. PHABLABS 4.0 consor-
tium and its member organizations disclaim all responsibility to the maximum extent possible
under applicable laws:
•	 All express or implied warranties in relation to the information and your use of it are excluded.
•	 All liability, including for negligence, to you arising directly or indirectly in connection with the

information or from your use of it is excluded.

This instruction is published under the Creative Commons licence CC-BY-NC.

3

?
TARGET AUDIENCE:

Entrepreneurs (+18 years old)

TOOLS:

SUMMARY:

Build your own remote sensor which can be read out by your smartphone.
In addition, the measured values are shown on an OLED display or a
RGB-Neopixel ring.

SUGGESTED TIME PLANNING: (Total: 4h)

Timing
in minutes

activity

ESTIMATED COST:

€ 20

PROPERTIES OF THIS WORKSHOP

4

Step 1: Parts list

Collect all materials for each participant.

The photonics parts can be bought by EYESTvzw.
The electronic parts can be bought by Fablabfactory.

Electronic Parts:

ESP 8266 or WeMos	
A WeMos is a very inexpensive microcon-
troller, which can be programed as easily
as an Arduino. This WeMos will control the
LEDs according to the uploaded ‘sketch’
(a term for program coined in the Arduino
community).	

Neopixel ring
With 12 or 16 LED. An array of RGB-LEDs,
with individual drivers and memory includ-
ed.	

Photodiode BPW34
		

Toggle switch

Resistor 220 Ohm 0,25W
2 pieces/participant
		

Loudspeaker 45 Ohms
		

Electrolytic capacitor 4,7 microF
		

Circuit board
		

http://www.eyest.eu
http://fablabfactory.com

5

Step 2: Electronic basics

Voltage and Current

It is useful to compare an electrical circuit to something we have a better understanding of, like a
water pipe system. Batteries or solar cells are like a water pumps; they generate water pressure,
which corresponds to the voltage. When you connect a pipe with one end to a water reservoir and
with the other to a water pump, the pump generates pressure (voltage) and water current. The water
current corresponds to an electrical current. The higher the pump pressure (voltage), the larger the
resulting water flow (current). You can limit the water flow (current) by putting something in its way
(a ball of hair in a clogged up shower drain) or make the tube thinner. Such a restriction corresponds
to an electrical resistor.

Another way to memorize the realtion between voltage (VOLT), current (AMP) and resistance (OHM).

6

Step 3: The microcontroller

This project uses a WeMos to control a NeoPixel ring, but a NodeMCU ESP8266 or similar will
do as well. To keep the confusion at a reasonable level, we describe everything in terms of the
WeMos. When using a different platform, the program environment needs to be adapted accord-
ingly, which we will describe below. Also, the pinout will most likely be different.
The WeMos is powered and programmed through a USB connection to a computer. Once it is
programmed, it can be powered by phone charger.
The WeMos is an Arduino based platform which can be directly programmed by any user through
a desktop or laptop and which can perform a large variety of tasks. Today, there are many vari-
ations of the Arduino platform coming in all sizes and peripheries. In our project, we choose the
WeMos, which is a tiny, cheap and very powerful platform made in China by a company other
than Arduino, but which can basically perform the same tasks. There are many free Arduino tuto-
rials available on the internet, which are perfect for any stage of advancement. In this tutorial, we
therefore focus on everything necessary for building our WeMos controlled photometer.

7

The metallic box is a shield for electromagnetic waves and contains the microcontroller and the
WLAN transceiver, which allows the WeMos to wirelessly communicate. In the WeMos Lite, this shield
is missing, which does not seem to pose a problem though. The curly printed wire outside this box
on the left is its antenna. The WeMos is powered through the USB-connector on the bottom, which
runs on 5 volts. Since the WeMos can only take only 3.3 volts, there are additional components on
the bottom of the board which provide this voltage.

Step 4: Periphery

The NeoPixel ring
…is one of many funny devices offered by Adafruit. Once your project today is up and running, you
can extend if with other RGB devices that you like.

We will build the circuit on a breadboard according to the wiring scheme.
Breadboards come in different sizes and have one more common rail. The large breadboard we use
has a total of 17×10=170 points. Each 10-point-column consists of 2 segments with 5 mutually
connected points each, as indicated by the cyan dashed line.

8

The NeoPixel ring has 3 terminals: plus(+) and ground (GND) for its supply voltage and Data Input
(DI). It needs 5V, but also works with 3.3V. We connect its Plus-Terminal to the “5V” pin and its ground
terminal next to the WeMos into a 5pin-column we call “ground column” of the WeMos. Connect
this ground column to the “G” pin of the WeMos. “Data Input” of the ring will be connected to pin 7
of the WeMos. Here is the fritzing diagram of the photometer:

The WeMos reads the photo-voltage provided by the photodiode on its analog-digital-converting
input A0. It feeds these data to the NeoPixel Ring via pin D7 and generates a sound signal at pin
D6. The loudspeaker is connected to D6 through a resistor and with a capacitor in parallel, which
keep the higher harmonics of the square wave at bay so the tone sounds more sinus-like.

Now take a 1×4cm² piece of printed circuit board and drill 2 4mm-holes into it, spaced at 30mm.
Insert and solder the photodiode in the center. Solder 2×10cm long wires to it; a green wire to the
anode (which is the side with the transverse metallic bar, see green arrow), and a black wire to the
cathode.

Plug the green wire next to the A0-pin of the WeMos, and the black wire to ground column.
Look at the terminals of the loudspeaker; one of them is marked with a minus sign “-“. One of the
terminals of the electrolytic capacitor is also marked by a minus sign. Solder the 4.7µF electrolytic
capacitor to the loudspeaker terminals, so that alike terminals connect. Then, cut the wires of a
270 ohms resistor down to 1cm, and solder one end to the positive capacitor terminal. Also add
the switch to the other end of the resistor using 2×10cm long wires. Connect everything according
to the fritzing scheme.

9

Step 5: Quick start guide for the WeMos

For programming and controlling the ESP, we use the Arduino IDE (Integrated development environ-
ment), which can be downloaded from https://www.arduino.cc/en/Main/Software .

After we start it, we first we need to tell this IDE that we use the WeMos (or whatever else we have)
so that the appropriate additional software can be downloaded.

In order to program the WeMos, we connect it to the USB port of the computer which runs the
Arduino programming environment. The USB-cable provides both the 5V voltage for running the
WeMos as well as the programming connection.

1. Open the Arduino IDE, go to “Files” and click on “Preferences”.

Copy the following line into the “Additional Boards Manager URLs” text box:

https://github.com/esp8266/Arduino/releases/download/2.4.0-rc2/package_esp8266com_index.
json

and press OK to close the Preferences tab.

2. Select “Tools” and “Board”, and click on “Boards Manager…” in the pop-up menu.

Navigate to “esp8266 by ESP8266 Community” and click into the field. This will install the pro-
gramming environment we need, for the WeMos we use, or other boards included in this package
as shown.

https://www.arduino.cc/en/Main/Software

10

Additional libraries we need

For our programs, we need additional libraries. The library “WebSockets” by Markus Sattler provides
easy WLAN communication and can be downloaded from the same menu as the esp8266 library:

We need another library that is not included in the Arduino IDE, so we get it from the internet. It
is Timelib.h, which provides the time in hours, minutes and seconds relative to a predetermined
starting point. This library is available at

https://github.com/PaulStoffregen/Time

On this site, press on the green “Clone or download” button and select “Download ZIP”. Do NOT
unzip the zip-file; it can be directly included in the Arduino IDE:

SketchInclude LibraryAdd .ZIP library

In this workshop, you can either use a NeoPixel ring or an OLED display to display the measured
sensor values. The NeoPixel ring uses artful colored LEDs and is easy to read out from the distance.
The small OLED-Display displays the actual measured number. In each case we need one additional
library to control those output devices.

For the NeoPixel ring, we need library Adafruit_NeoPixel.h.
Go to

https://github.com/adafruit/Adafruit_NeoPixel

https://github.com/PaulStoffregen/Time
https://github.com/adafruit/Adafruit_NeoPixel

11

Proceed as for the Timelib.h library.

For the OLED display we need the SSD1306Ascii.h library.
Go to
https://github.com/greiman/SSD1306Ascii

Proceed as for the Timelib.h library.

Finally, we need to tell the Arduino IDE who it should communicate with. Go to ToolsBoard and
select the appropriate WeMos (D1 R2 & mini, Lite, or whatever you use) from the list:

Now our WeMos is ready to be programmed. Don’t connect it just yet.

https://github.com/greiman/SSD1306Ascii

12

Step 6: The sketch (program code)

We use the sketch with the code below, which enables the WeMos to be controlled by your smart-
phone. Here, the WeMos acts as an Access Point. The program code is included with this workshop
and can also be downloaded at http://phablabs.eu/workshop/remote-sensor-smartphone-readout

// Connect your cell phone with Wurstserver, open a browser,
// and go to 192.168.4.1.
// WeMos will send value to your phone, change the tone signal frequency
// and the number (and color) of NeoPixel ring LEDs.
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <WiFiServer.h>
#include <WiFiUdp.h>
#include <ESP8266mDNS.h>
#include <ESP8266WebServer.h>
#include <TimeLib.h>
#include <Adafruit_NeoPixel.h>

#ifdef __AVR__
#include <avr/power.h>
#endif

#define PIN D7

ESP8266WebServer server(80);
MDNSResponder mdns;
String bewegung_html = “<table border = 1>”;
int sensorValue;

String twoDigits(int digits){
	 if(digits < 10) {
		 String i = ‘0’+String(digits);
		 return i;
	 }
	 else {
		 return String(digits);
	 }
}

Adafruit_NeoPixel strip = Adafruit_NeoPixel(16, PIN, NEO_GRB + NEO_KHZ800);

void setup() {
	 // WiFi
	 WiFi.softAP(“Wurstserver”, “”);
	 Serial.begin(115200);
	 if (mdns.begin(“esp8266”, WiFi.localIP())) {
		 Serial.println(“MDNS responder started”);
}
sensorValue = analogRead(A0);
server.on(“/”, handleRoot);
server.on(“/inline”, [](){

http://phablabs.eu/workshop/remote-sensor-smartphone-readout
http://phablabs.eu/workshop/photometer-optic-and-acoustic-indicator

13

server.send(200, “text/plain”, “Funktioniert”);
});
server.begin();

// NeoRing
strip.begin();
strip.show(); // Initialize all pixels to ‘off ’
}

void loop() {
	 delay(100);
	 sensorValue = analogRead(A0);
	 RingEinschalten(sensorValue/2);
	 tone(D6, sensorValue*3);
	 server.handleClient();
	 mdns.update();
}

void handleRoot() {
	 bewegung_html = bewegung_html + “<tr><td>” + twoDigits(hour()) + “:” + twoDigits(minute())
	 + “:” + twoDigits(second()) + “</td> <td> Sensorwert “ + sensorValue
	 + “</td> </tr>”;

	 server.send(200, “text/html”, bewegung_html);
}

void RingEinschalten(uint8_t sensetemp)
{
	 colorSet(strip.Color(0, 0, 0), 16);
	 if(sensetemp>=32) {
		 sensetemp = sensetemp % 32 +1;
		 colorSet(strip.Color(255, 0, 0), sensetemp);
	 }
	 else if(sensetemp>=16) {
		 sensetemp = sensetemp % 16 +1;
		 colorSet(strip.Color(0, 255, 0), sensetemp);
	 }
	 else {
		 colorSet(strip.Color(0, 0, 255), sensetemp);
	 }
}

void colorSet(uint32_t c, uint8_t maxpixel) {
	 if (maxpixel > strip.numPixels()){
		 maxpixel = strip.numPixels();
	 }
	 for(uint16_t i=0; i<maxpixel; i++) {
		 strip.setPixelColor(i, c);
	 }
	 strip.show();
}

14

Brief explanation of the program

The program starts by including all libraries needed and by defining all variables. In the function
setup() our WiFi access point “Wurstserver” (choose an individual name if more than one WeMos
are present in the room so you know which one you’re connecting to), the Serial Monitor (which is a
window within our program environment which can be used to control variables) and the NeoPixel
ring are started. All LEDs in the ring are switched off.

The function loop() runs endlessly. It reads the voltage provided by the photodiode at pin A0, which
is the analog-digital-converting input of the WeMos. The obtained value sensorValue is passed on
as input to the NeoPixel ring, the tone generator and the WiFi access point.

All other functions are defined after loop().

RingEinschalten() transforms the sensorValue to number and color of the LEDs switched on in
the NeoPixel ring. For 1…16, the ring shines blue, for 17…32 green and above 32 red. The function
colorSet is called in this function, with color and number of pixel as parameters. It is pretty much
self-explanatory. There is a large variety of tutorials on NeoPixel devices in all languages and degrees
of advancement on the internet.

Uploading the program

Now check your setup one last time by comparing it to the fritzing scheme in Fig. 6. Has everything
been connected correctly? Are the solder points ok? Any short circuit or open circuit? Is the WeMos
the right way around? Is the polarity of the electrolytic capacitor correct? Only if everything looks
fine, go ahead.

Connect the WeMos to a free USB-port of your computer and find out the name of this port, using
the Device Manager (Geräte-ManagerAnschlüsse (COM/LPT)). In the IDE, select the port with
ToolsPort. Make sure the right type of WeMos is selected (ToolsBoard …). Compile and upload
the file using the button displaying an arrow pointing right. If everything goes well, the IDE should
look like this after the upload:

15

Now the photometer should already be up and running! The ring should light up and the tone gener-
ator should output a tone (when the switch is on!) with a frequency depending on the light intensity
hitting the photo diode. If nothing happens or you smell something funny, immediately disconnect
the WeMos and search for the error.

16

Step 7: Building the box fo the electronics

Disconnect the device from the USB plug. The following figure shows the mounting of the NeoPixel
Ring and our 3D-printed scattering cap.

(a) Front cover for the NeoPixel ring, (b) box components with plugged in photodiode and NeoPixel
ring, (c) front panel of photometer with photodiode (left) and NeoPixel ring.

Screw the small board with the photo diode to the front panel. You can also glue it (after soldering
the cables to it!). The ring which holds the loudspeaker is glued to the bottom of the box. The bread-
board with the WeMos has a sticky surface on its flip side, just peel of the protective layer. To keep
the loudspeaker firmly in place you can either glue it into the ring or use a double-sided sticky tape.

17

a) breadboard with WeMos, (b) interior of box with NeoPixel ring (left), photodiode (middle) and
loudspeaker holder (ring glued to the bottom). (c) The breadboard has a sticky flipside (remove
protective foil) and should be glued to the bottom of the box. (d) Loudspeaker with a resistor in
series and a capacitor in parallel, to suppress the higher harmonics of the tone square wave.

The figure below shows the completed electronics inside its box, consisting of the WeMos on a
breadboard, the photodiode (green-blue wires), NeoPixel ring (green-yellow-red braided wires) and
loudspeaker with its low-pass filter.

Completed electronics with WeMos on a breadboard, photodiode (green-blue wires), NeoPixel ring
(green-yellow-red braided wires) and loudspeaker

18

We finish with the top of the box. Disconnect your photometer again. Glue the corner parts onto the
lid as indicated by the gravure as shown in the figure below. Carefully close the lid.

19

Step 8: Operation of the photometer

If all is fine, plug the 5V-USB connector into the socket on the WeMos board. Now the NeoPixel Ring
should again light up and you should hear a tone from the loudspeaker.

When you change the illumination around the photodiode, the tone frequency should vary and the
number and color of the Ring LEDs should change.

Now take a smartphone and look for the access point of your Wurstserver. You can connect to it
without a password. Start your browser and go to URL 192.168.4.1. Wurstserver will provide you
with the current light intensity in terms of a natural number. Every time you refresh the website, a
request is sent and you will get an updated value.
You can replace the photodiode by other sensors, too. There is a large range of sensors available
for Arduino-like systems.

Step 9: Using an OLED-display instead of a Neopixel ring

If you prefer numerical values over fancy colors, you can also use an (OLED) display instead of a
NeoPixel ring. Here we use OLED display RIT253 (Fig. 14). This display has 128×64 pixels, and is
controlled by the popular SSD1306 driver IC. It has 4 terminals and is controlled via I2C-bus: Vcc
(+3.3V), GND (ground) for the power supply, and SCL and SDA for the data connection (CLock and
DAta). Connect Vcc and GND to the respective terminals of the WeMos, SCL to D1 and SDA to D2.
The program below “G3_AP_OLEDDisplay” can be downloaded from http://phablabs.eu/workshop/
remote-sensor-smartphone-readout

http://phablabs.eu/workshop/remote-sensor-smartphone-readout
http://phablabs.eu/workshop/remote-sensor-smartphone-readout

20

// Connect your cell phone with Wurstserver, open a browser,
// and go to 192.168.4.1.
// WeMos will send value to your phone, change the tone signal frequency
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <WiFiServer.h>
#include <WiFiUdp.h>
#include <ESP8266mDNS.h>
#include <ESP8266WebServer.h>
#include <TimeLib.h>
#include <Wire.h>
#include “SSD1306Ascii.h”
#include “SSD1306AsciiWire.h”
#define I2C_ADDRESS 0x3C
ESP8266WebServer server(80);
MDNSResponder mdns;
String bewegung_html = “<table border = 1>”;
int sensorValue;
SSD1306AsciiWire oled;
String timenow;
char ssid[20] = “Wurstserver”;

String twoDigits(int digits){
	 if(digits < 10) {
		 String i = ‘0’+String(digits);
		 return i;
	 }
	 else {
		 return String(digits);
	 }
}

void setup() {
	 strcat(ssid, “_Frank”);
	 WiFi.softAP(ssid, “”);
	 Serial.begin(115200);
	 if (mdns.begin(“esp8266”, WiFi.localIP())) {
		 Serial.println(“\nMDNS responder started”);
	 }
	 Wire.begin();
	 Wire.setClock(400000L);
	 oled.begin(&Adafruit128x64, I2C_ADDRESS);
	 oled.setFont(ZevvPeep8x16);
	 oled.clear();
	 randomSeed(analogRead(A0));
	 oled.setScroll(true); // ohne dies wird nur die letzte Zeile überschrieben //
	 sensorValue = analogRead(A0);
	 server.on(“/”, handleRoot);
	 server.on(“/inline”, [](){
	 server.send(200, “text/plain”, “Funktioniert”);
	 });
	 server.begin();
}

21

void loop() {
	 delay(1000);
	 sensorValue = analogRead(A0);
	 tone(D6, sensorValue*3);
	 server.handleClient();
	 mdns.update();
	 timenow = String(hour())+”:”+twoDigits(minute())+”:”+twoDigits(second());
	 oled.print(“\n”+timenow+” Wert”+String(sensorValue));
}

void handleRoot() {
	 bewegung_html = bewegung_html + “<tr><td>” + timenow + “ Wert” + “</td> <td>” +
	 String(sensorValue) + “</td> </tr>”;
	 server.send(200, “text/html”, bewegung_html);
}

22

Last step: End results & conlusions

What have we learned?

We have learned in this workshop how to
•	 Program a WeMos microcontroller, writing some simple sketches (programs)
•	 Measure an analog entity (here the local light intensity), display it on an LED ring array, con-
vert it to sound and send it to a smartphone
•	 build some basic electronics, and connect some components by soldering
•	 construct a casing for the device using a laser cutter and wood

Concluding thoughts

Arduino-based systems are an inexpensive and easy way to solve all kinds of problems, that only a
couple of years ago required extensive expert knowledge. Today, there is a huge Arduino community
around the world who works on all kinds of open-source-projects and who are more than happy to
share their knowledge and experience. You can use the introduction from this workshop to come
up with and solve your own tasks.

23

PHABLABS 4.0 is a European project where two major trends are combined into one powerful and
ambitious innovation pathway for digitization of European industry:
On the one hand the growing awareness of photonics as an important innovation driver and a key
enabling technology towards a better society, and on the other hand the exploding network of
vibrant Fab Labs where next-generation practical skills-based learning using KETs is core but where
photonics is currently lacking.

www.PHABLABS.eu

This workshop was set up by the Institute of Photonics Sciences, ICFO in close collaboration with
Fablab Barcelona and Tinkerers Lab.
 		

www.phablabs.eu

